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Key Points: 9 

 Assessment of predictive skill for marine heatwave (MHW) location, area, and intensity 10 

is performed using hindcast simulations. 11 

 Errors in all attributes of predicted MHWs grow with lead time, exceeding the skill of a 12 

random forecast for at least 12 months. 13 

 Errors in the intensity of predicted MHWs depend on target month, with higher skill in 14 

December–January and lower skill in August–October. 15 

  16 
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Abstract 17 

Accurate and interpretable marine heatwave (MHW) forecasts allow decision makers and 18 

industries to plan for and respond to extreme ocean temperature events. Recent work 19 

demonstrates skillful pointwise prediction of MHWs. Here, we evaluate a method of detecting 20 

and predicting spatially connected MHW objects. We apply object-based forecast verification to 21 

the CESM2 Seasonal-to-Multiyear Large Ensemble (SMYLE) experiment, a set of initialized 22 

hindcasts with 20-member ensembles of 24-month simulations initialized quarterly from 1970–23 

2019. We demonstrate that SMYLE predicts MHWs that occur near observed MHWs with high 24 

skill at long lead times, but with errors in location, area, and intensity that grow with lead time. 25 

SMYLE exhibits improved skill in predicting the intensity of MHWs in December and January, 26 

and worse skill from August to October. This work illustrates the capacity to forecast connected 27 

MHW objects and to quantify the uncertainty in those forecasts with potential applications for 28 

future community use. 29 

Plain Language Summary 30 

User-friendly forecasts of marine heatwaves, exceptionally warm areas in the ocean, allow local 31 

decision makers and industries in coastal areas to plan for extreme sea surface temperatures. To 32 

interpret these forecasts, we evaluate how well the forecast model predicts the location, size, and 33 

temperature of past marine heatwave events. Here, we examine marine heatwaves as spatially 34 

connected events, or objects, instead of looking at individual locations independently. We find 35 

that marine heatwaves can be predicted several months in advance, but with errors in location, 36 

size, and temperature. These prediction errors get worse as we predict marine heatwaves further 37 

in advance. Finally, predictions of a marine heatwave’s temperature are more accurate when the 38 

marine heatwave occurs in December or January, and less accurate when the heatwave occurs 39 
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between August and October. Spatial marine heatwave predictions could be used to inform 40 

marine resource management efforts and to communicate uncertainty in operational forecasts. 41 

1 Introduction 42 

Emissions over the past century have led to irreversible climate change. The combination of 43 

long-term warming and extreme sea surface temperature (SST) events, known as marine 44 

heatwaves (MHWs), is pushing ocean temperatures to increasingly extreme highs (Deser et al., 45 

2024; Frölicher et al., 2018; Oliver et al., 2018). These events cause devastating effects on 46 

biological communities and marine ecosystems already experiencing stress from pollutants and 47 

microplastics (Jacox et al., 2020; Mills et al., 2013; Smale et al., 2019; Smith et al., 2023). 48 

MHWs also have socioeconomic impacts including fish farm mortality and the closure of 49 

commercial fisheries, with economic costs that can exceed US$800 million (Smith et al., 2021). 50 

Accurate MHW forecasts could allow local decision makers and industries to plan for and 51 

respond to these events (Hartog et al., 2023; Hobday et al., 2024). 52 

Understanding the mechanisms that drive MHWs is necessary to improve predictive capabilities. 53 

Global analyses reveal that MHWs are driven by local atmospheric and oceanic variability, 54 

including changes in shortwave radiation, surface fluxes, advection, and Ekman transport (Bian 55 

et al., 2023, 2024; Marin et al., 2022).These drivers are often associated with large-scale modes 56 

of climate variability like the Indian Ocean Dipole, the Pacific Decadal Oscillation, and El Niño–57 

Southern Oscillation (ENSO) (Capotondi et al., 2024; Gregory et al., 2024; Holbrook et al., 58 

2019; Sen Gupta et al., 2020). Focused studies identify drivers of individual MHWs, including 59 

those in the Northeastern Pacific (Amaya et al., 2020; Fewings & Brown, 2019; Scannell et al., 60 

2020; Schmeisser et al., 2019), the Southwestern Atlantic (Manta et al., 2018), the Tasman Sea 61 



manuscript submitted to Geophysical Research Letters 

 

(Kajtar et al., 2022; Oliver et al., 2017), the Indian Ocean (Qi et al., 2022), and off the coast of 62 

Western Australia (Benthuysen et al., 2014; Pearce & Feng, 2013).  63 

MHWs are commonly defined as SST anomalies relative to a long-term climatology that exceed 64 

the local 90th percentile threshold of SST variability (Hobday et al., 2016). For monthly data, 65 

SST anomalies above a 90th percentile threshold for any duration are considered MHWs 66 

(Capotondi et al., 2024; Scannell et al., 2020). While useful for standardizing MHW 67 

identification, this definition fails to capture the spatial coherence of MHWs, which are spatially 68 

connected regions, or objects, that can change shape and move across ocean basins. The 69 

spatiotemporal evolution of MHWs has been the focus of numerous studies (e.g., Bonino et al., 70 

2023; Scannell et al., 2024; Sun, Jing, et al., 2023). Treating MHWs as objects instead of as 71 

points introduces new ways to quantify prediction skill and assess sources of predictability. 72 

Analyses of ensemble hindcast systems from the North American Multi-Model Ensemble 73 

(NMME) and the European Centre for Medium-Range Weather Forecast (ECMWF) demonstrate 74 

long-lasting skill for MHW predictions globally (De Boisséson & Balmaseda, 2024; Jacox et al., 75 

2022). In these studies, a correct prediction only counts when the predicted MHW occurs at the 76 

precise location of the observed MHW. If the MHW is predicted in the incorrect location, the 77 

event is counted as an error twice: once as a missed prediction where the MHW was observed 78 

and again as a false positive where it was predicted. To address this “double penalty effect” 79 

(Rossa et al., 2008), the numerical weather prediction community developed forecast verification 80 

techniques that go beyond pointwise metrics (Dorninger et al., 2018; Gilleland et al., 2009, 81 

2010). Here we apply an object-based verification technique to hindcast predictions of MHWs to 82 

evaluate how well the model predicts the location, overlap, area, and intensity of spatially 83 

connected extreme SSTs. 84 
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2 Data and Methods 85 

2.1 Data 86 

We analyze the Seasonal-to-Multiyear Large Ensemble (SMYLE), a set of hindcast simulations 87 

run using the Community Earth Systems Model (CESM2) with a nominal 1° horizontal 88 

resolution for models of each component (Danabasoglu et al., 2020; Yeager et al., 2022). The 89 

initial conditions for SMYLE come from a forced-ocean-sea-ice model (SMYLE FOSI). 90 

SMYLE FOSI is run from 1958–2020 using the Parallel Ocean Program version 2 (POP2) and 91 

the Community Ice CodE 5.1.2 (CICE5) forced by historical atmospheric conditions given by the 92 

Japanese 55-year Reanalysis (JRA-55-do; Tsujino et al., 2018). SMYLE consists of 24-month 93 

long forecasts initialized on the first of every February, May, August, and November from 1970-94 

2019. Each forecast has 20 ensemble members. These data have been used to study predictability 95 

across the climate system, including MHWs and ocean acidification (Mogen et al., 2024), 96 

ecosystem stressors (Mogen et al., 2023), and the North Atlantic Oscillation (Dunstone et al., 97 

2023). 98 

The initialization month is defined as the month in which the forecast was initialized and the lead 99 

month or lead time as the time since initialization. Following Jacox et al. (2022), lead month 0.5 100 

refers to the predicted monthly mean of the initialization month. The target month is the month 101 

being predicted, which varies for different initialization months and lead months. 102 

We examine monthly means of the top layer (5 m depth) ocean temperature from SMYLE, 103 

which we refer to as SST. We compare the SMYLE forecast data to observations from NOAA’s 104 

Optimum Interpolation Sea Surface Temperature v2.1 (OISST) product (Huang et al., 2021), 105 

which provides daily SST values at 0.25° resolution. Following Jacox et al. (2022), we resample 106 
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the data to monthly frequency to match the SMYLE forecast resolution. We regrid the SST from 107 

both SMYLE and OISST to a common 1° x 1° grid and mask data poleward of 65° to avoid 108 

small grid cells at high latitudes. We also exclude the Black Sea, the Baltic Sea, the Red Sea, and 109 

the Hudson Bay. 110 

2.2 Defining Marine Heatwaves in Time and Space 111 

We define the point locations of MHWs for each month before defining spatially connected 112 

MHW objects (Fig. 1). In OISST, we remove the monthly climatology and linear trend 113 

calculated from the 30-year reference period of 1989–2018 to define SST anomalies. We then 114 

calculate a 90th percentile threshold for each month and location, above which any SST anomaly 115 

is considered an MHW. In SMYLE, SST anomalies (Fig. 1b) are calculated by removing a lead-116 

dependent (24-month) climatology and linear trend for each initialization month based on the 117 

1989–2018 reference period (Jacox et al., 2022). We then calculate a lead-dependent 90th 118 

percentile threshold to define the MHWs at each grid cell (Fig. 1c).  119 
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120 
Figure 1. Identifying and matching MHW objects in an example forecast. In the first ensemble 121 

member prediction of May 2010 initialized on February 1, 2010 (3.5-month lead), we remove the 122 

climatology and trend from the (a) predicted SST to calculate (b) the anomalies. We apply the 123 

90th percentile threshold to define (c) MHW point locations and use Ocetrac to define (d) the 124 

spatially connected predicted objects. (e) We match forecast clusters (red, pink, green, and 125 

yellow regions) with observed clusters (outlined contours) where an overlap exists. Where no 126 

overlap exists, forecast objects (blue regions) and observed objects (blue outlines) are 127 

unmatched. (f) For each matched forecast cluster, we consider the full forecast footprint (pink 128 

region) to be a correct prediction. 129 
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After defining MHWs at each ocean grid cell, we use Ocetrac, an MHW tracking tool that uses 130 

image processing techniques to smooth and label connected MHW grid cells (Scannell et al., 131 

2024), to identify MHW objects from the MHW points in SMYLE and OISST (Fig. 1d; Text 132 

S1). 133 

2.3 Verifying Marine Heatwave Forecasts 134 

Object-based forecast verification requires a process to match objects between the forecast field 135 

(SMYLE) and the verification, or observation, field (OISST) to compare objects. We employ the 136 

Method for Object-based Diagnostic Evaluation (MODE; Davis et al., 2006a, 2006b) to perform 137 

object-based verification of MHW predictions. MODE has been used to analyze forecast skill of 138 

precipitation (Clark et al., 2014; Li et al., 2020), atmospheric rivers (DeHaan et al., 2021), 139 

drought (Abatan et al., 2018), cloud cover (Mittermaier & Bullock, 2013), and chlorophyll 140 

(Mittermaier et al., 2021). 141 

MODE identifies, merges, and matches objects between the forecast and verification fields, and 142 

calculates attributes on simple objects, clusters, and cluster pairs (Text S1). MODE defines 143 

simple objects as individual objects in either field, clusters as groups of objects in one field that 144 

are paired to a cluster in the other field, and cluster pairs as sets of matched clusters in each field. 145 

We use the SST anomalies within the MHW objects identified by Ocetrac as the input field for 146 

MODE (Fig. 1d) and match a forecast object (SMYLE) and an observed object (OISST) at each 147 

timestep if they overlap in space (Fig. 1e). 148 

2.4 Evaluating Forecast Skill 149 
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We evaluate forecast skill by assessing how often forecast MHWs are matched to observed 150 

MHWs and by examining the similarity of matched MHW clusters. For pointwise forecasts, 151 

contingency tables are used to measure how often a forecast is a hit (forecast yes, observed yes), 152 

a false alarm (forecast yes, observed no), a miss (forecast no, observed yes), or a correct negative 153 

(forecast no, observed no). In the object-based framework, we relax the constraint that a forecast 154 

MHW must occur at the same location as the observed MHW. Instead, we define the whole 155 

forecast MHW cluster to be a hit when the forecast cluster overlaps with an observed cluster 156 

(Fig. 1f). Thus, we define locations within matched forecast clusters as hits, locations within 157 

unmatched forecast objects as false alarms, locations within observed objects or clusters but not 158 

within matched forecast clusters as misses, and locations with no forecast or observed objects as 159 

correct negatives. 160 

In the example in Figure 1f, a pointwise contingency table would determine that the pink region 161 

within the black contour is a hit, the pink region outside the black contour is a false alarm, the 162 

contoured white region is a miss, and everywhere else is a correct negative. The object-based 163 

contingency table, however, defines the entire pink region, whether a point is within the black 164 

contour or not, as a hit because it belongs to a matched forecast object. 165 

We use the contingency table statistics to evaluate two metrics: the False Alarm Ratio (FAR) and 166 

the deterministic limit (TDL). FAR quantifies the fraction of predicted events that do not occur 167 

and is calculated separately for each lead month: 168 

FAR =
false alarms

hits + false alarms
. #(𝟏)  
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Thus, higher values of FAR indicate weaker predictive skill. TDL indicates the timescale at which 169 

MHWs can be reliably predicted. It is calculated as the latest lead time at which the number of 170 

hits (H) is greater than or equal to the number of misses and false alarms (X): 171 

𝑻𝑫𝑳 = 𝐋𝐞𝐚𝐝[H=X]. #(𝟐)  

We evaluate TDL with both pointwise and object-based contingency table statistics.  172 

These skill metrics convey how often SMYLE predicts MHWs but do not characterize how 173 

accurate the predicted MHWs are. We quantify this accuracy by calculating four pair attributes 174 

for each cluster pair: centroid distance, intersection over union, area ratio, and intensity ratio. 175 

The centroid distance of a cluster pair is the distance between the centroids of the forecast cluster 176 

and the observed cluster. The intersection over union is the overlapping area between the 177 

forecast cluster and the observed cluster divided by the area of the union of both clusters.  178 

The area and intensity ratios are defined as the ratio of the areas or intensities of the forecast and 179 

observed MHW clusters belonging to a cluster pair, with the higher value being divided by the 180 

smaller value (Text S2, Fig. S1). For example, the area of the larger MHW cluster is divided by 181 

the area of the smaller MHW cluster regardless of whether the forecast MHW is larger or smaller 182 

than the observed MHW. The intensity ratio is similarly defined as the ratio of the median SST 183 

anomaly of the warmer MHW to the median SST anomaly of the cooler MHW. All statistics are 184 

calculated for the whole object cluster, not for individual objects within the cluster. 185 

Perfect forecast skill is indicated by a centroid distance of zero (lower bound), an intersection 186 

over union of one (upper bound), an area ratio of one (lower bound), and an intensity ratio of one 187 

(lower bound). We average each attribute over every MHW cluster for each initialization month 188 
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and lead time. Then, for each matched forecast MHW, we assign the value of its attributes to its 189 

spatial footprint and average over each initialization month and lead time to create spatial maps 190 

of each attribute. Mean values of ratio quantities are calculated as the geometric mean (Text S2), 191 

and all lead-dependent mean quantities are averaged over objects, not grid cells, so they are not 192 

area-weighted. All skill metrics are evaluated against the skill of a random forecast (Text S3). 193 

While Mogen et al. (2024) select the 97.5th percentile of skill scores from 1000 random 194 

forecasts, the computational expense of MODE limits our evaluation to a single random forecast. 195 

While this benchmark is less statistically robust, we expect that a larger sample size of random 196 

forecasts would yield qualitatively similar results. 197 

3 Results 198 

We evaluate the skill in predicting the presence of MHWs by evaluating the object-based FAR 199 

and by comparing the pointwise TDL to the object-based TDL. FAR is low at short lead times and 200 

increases globally with lead time, remaining lower (more skillful) than the random forecast FAR 201 

at most locations (Fig. 2a–d). At all lead times, FAR is lowest in the tropical Pacific Ocean, 202 

where the ENSO pattern of extreme SST anomalies is predicted better than the rest of the globe. 203 

Studies of pointwise MHW predictions also show higher skill in the tropical Pacific (Jacox et al., 204 

2022; Mogen et al., 2024).  205 
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206 
Figure 2. The false alarm ratio (FAR) and the deterministic limit (TDL). (a–d) The 1.5-, 3.5-, 5.5-207 

, and 7.5-month lead object-based FAR demonstrate that FAR increases globally with lead time. 208 

Hatched regions indicate FAR values greater than the random forecast’s FAR values. While the 209 

pointwise TDL (e) shows predictive skill past one month only in the tropical Pacific, the object-210 

based TDL (f) indicates multi-month skill globally. 211 

The pointwise TDL (Fig. 2e) indicates that SMYLE reliably predicts pointwise MHWs only in the 212 

first lead month, except in the tropical Pacific. The object-based TDL (Fig. 2f), however, shows 213 

that MHW events are predicted to occur near observed events for one to two seasons globally, 214 

and up to a year in the tropical Pacific. 215 
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We next quantify the errors in forecast MHWs’ location, overlap, area, and intensity to evaluate 216 

how well the predicted MHWs represent the observed MHWs to which they are matched. The 217 

mean forecast errors for each skill metric have similar overall spatial patterns at 3.5 lead months 218 

(Figs 3b, d, f, h). The lowest forecast errors occur in the tropical Pacific Ocean, suggesting that 219 

SMYLE not only predicts the presence of MHWs in this region (Fig. 2), but also predicts their 220 

locations, areas, and intensities well. Skill values are only averaged over matched forecast 221 

clusters, so interpretation of object-based skill metrics must incorporate the FAR and TDL 222 

metrics. Because the verification data include a limited sample size of observed MHWs, other 223 

regions with especially high or low skill may be influenced by individual events that are 224 

especially well or poorly predicted. Evaluating drivers of individual MHWs could help 225 

determine why certain events are predicted better than others.  226 

The centroid distance, intersection over union, and area ratio depend primarily on lead time (Fig. 227 

3a, c, e).  The intensity ratio depends on lead time for the first few months, after which it 228 

depends on the target month, indicating the importance of seasonal variability (Fig. 3g). The 229 

magnitude of each metric varies for MHWs of different sizes (Fig. S2) and depends slightly on 230 

the choice of Ocetrac radius (Fig. S3). The average matched forecast MHW has a centroid within 231 

1400 km of the observed MHW’s centroid, a 15–20 percent overlap with the observed MHW, an 232 

area less than 3 times smaller or larger than the observed MHW’s area, and a median SST 233 

anomaly 1.25–1.35 times warmer or cooler than the observed MHW’s median SST anomaly 234 

(Fig. 3a, c, e. g). All metrics exhibit high skill at short lead times and exceed the skill of random 235 

forecasts for the first 12 lead months. 236 
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237 
Figure 3. Mean forecast errors in centroid distance (a, b), intersection over union (c, d), area 238 

ratio (e, f), and intensity ratio (g, h). The left column (a, c, e, g) shows the mean error of each 239 
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metric averaged over all matched cluster pairs for each initialization month (colored lines) and 240 

lead time, while the right column (b, d, f, h) shows the mean errors for the 3.5-month lead 241 

predictions over all objects and initialization months, where lighter hues signify better skill. 242 

Dashed lines in the left column show the mean forecast errors of a random forecast, and hatched 243 

regions in the right column indicate skill worse than the random forecast.  244 

We examine the intensity ratio by lead and target month to quantify its target-month dependence 245 

and seasonal variability (Fig. 4a). We then calculate the intensity ratio anomaly factor (Text S2), 246 

the factor by which the intensity ratio is greater than or less than the mean intensity ratio for a 247 

given lead month (Fig. 4b). Anomaly factors less than one (blue) mean the intensity ratio is more 248 

skillful and anomaly factors greater than one (red) mean the intensity ratio less skillful.  249 

The intensity ratio for a given lead time is least skillful when the target month is between August 250 

and October, and most skillful when the target month is December or January. At lead times less 251 

than 4.5 months, initialization month plays an important role (Figs. 3g, 4b), after which the 252 

intensity ratio depends on the target month. The random forecast exhibits the same target-month 253 

improvements as the SMYLE predictions (crosses in Fig. 4b), indicating that the seasonal skill 254 

improvements are likely due to SMYLE’s prediction skill of the overall SST distribution. 255 

Nevertheless, SMYLE’s predictions of MHW intensity are more skillful than the random 256 

forecast’s for the first 12 months (Fig. 4a). The target-month intensity ratio improvements are 257 

dominated by seasonal changes in the tropical and North Pacific, which display better skill in the 258 

boreal winter (when ENSO peaks) and worse skill in August–October (Fig. S4). This spatial skill 259 

pattern is consistent with previous results on ENSO-related prediction skill (e.g., Jacox et al., 260 

2022; Shin and Newman, 2021). 261 
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262 
Figure 4. Dependence of the intensity ratio on lead month and target month. (a) The mean 263 

intensity ratio for each target month and lead month, with averages for each lead month shown 264 

along the bottom x-axis and averages for each target month shown along the right y-axis. Dots 265 

indicate intensity ratios greater than the random forecast’s. (b) The same as in (a) but showing 266 

the intensity ratio anomaly factor relative to the lead-dependent mean. A negative anomaly factor 267 

(blue) represents better intensity ratios (closer to one) and a positive anomaly factor (red) 268 

represents worse intensity ratios (further from one). Crosses (X) indicate anomaly factors greater 269 

than the random forecast’s. Panel (b) has no bottom scatter plot because the lead-dependent 270 
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mean intensity ratio anomaly factor is one at all lead months. Gray boxes in both panels are 271 

lead/target combinations with no data (for example, there is no 0.5-month prediction for June). 272 

4 Conclusions 273 

We demonstrate a novel evaluation method for verifying MHW predictions and quantify the skill 274 

in predicting the occurrence of MHWs and their associated attributes. By combining methods 275 

from both MHW detection and weather forecast verification we evaluate how well CESM2 276 

SMYLE simulates and predicts MHWs. The results indicate that SMYLE forecasts effectively 277 

represent observed MHWs from OISST, extending previous evaluations of MHW predictions 278 

(De Boisséson & Balmaseda, 2024; Jacox et al., 2022) by predicting MHWs as objects instead of 279 

points. The method introduced here avoids incurring double penalties for the misplacement of 280 

predicted events and provides information about the types of errors that occur in MHW forecasts. 281 

SMYLE demonstrates global seasonal to annual MHW prediction skill (Fig. 2). The error 282 

metrics examined here—centroid distance, intersection over union, area ratio, and intensity 283 

ratio—depend primarily on lead time and outperform random forecast skill for at least 12 lead 284 

months. Predictions of MHWs in December and January best predict MHW intensity, while 285 

predictions of MHW intensity between August and October perform worse, likely due to ENSO-286 

related skill in the tropical and North Pacific. 287 

A prediction with low error refers to a predicted MHW that has similar attributes to the observed 288 

MHW it is matched with. MHW predictions in locations and lead months with low error but high 289 

FAR values still exhibit weak predictive skill overall because the predicted MHW is unlikely to 290 

occur in the first place. Thus, forecast error metrics (Fig. 3) must be interpreted along with FAR 291 

(Fig. 2). 292 
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Both MODE and Ocetrac are designed to run on evenly spaced grids, unlike the native CESM 293 

grid or the interpolated 1° x 1° grid used here. This makes the presented approach problematic at 294 

high latitudes, so we constrained our analysis to latitudes less than 65°. MODE was also 295 

designed for regional grids instead of global grids, so it does not allow for periodic boundary 296 

conditions. This can cause some MHW events that span the southern coast of Africa or the 297 

Mediterranean Sea to be split into two events, which leads to more misses and less accurate 298 

predictions at the edges of the map (Figs. 2a, 3). We choose this longitude edge to minimize the 299 

impact of this aspect of MODE. Finally, we use permissive criteria for matching forecast and 300 

observed events: we require only that the objects overlap in space but do not require the objects 301 

to have similar areas or intensities. Moreover, while we allow for the separation of MHWs in 302 

space, we evaluate only the temporal co-occurrence of MHWs following other recent studies 303 

(e.g., Jacox et al., 2022; Mogen et al., 2024). A double penalty in time, when an MHW is 304 

predicted in the right place but the wrong time, could be addressed with temporal aggregation or 305 

object tracking (Clark et al., 2014).  306 

Spatial forecasts have several potential applications for community use. Object-based definitions 307 

of MHWs and other ocean extremes could be used to improve our process-based understanding 308 

of the drivers and the predictability of extreme and compound events (Gruber et al., 2021; 309 

Mogen et al., 2024). Object-based seasonal forecasts may also be useful for open-ocean 310 

predictions relevant for dynamic ocean management (Maxwell et al., 2015) and living marine 311 

resource management, including monitoring and closures and annual catch limits (Tommasi et 312 

al., 2017). Spatial uncertainties and errors like those presented here must be incorporated for 313 

these operational applications. Spillman et al. (2025) identify the need for useful and useable 314 

MHW forecasts that present skillful information at relevant scales and with interpretable metrics. 315 
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Object-based predictions contribute to this goal by providing novel and intuitive ways to 316 

communicate MHW forecasts both to end users and to a general audience. 317 
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